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1. INTRODUCTION

It is axiomatic that all phases of future semiconductor device develop-

ment, such as that indicated by the VLSI (very large scale integration), and

VHSIC (very high speed integrated circuits) programs depend on the quality of

the semiconductor material. Growers of these materials, e.g., silicon, gallium

arsenide, and indium phosphide, etc., are interested in efficient, reliable

methods that yield defect-free and dislocation-free semiconductors. Over many

years, a variety of different techniques have been developed to grow materials,

some overcoming disadvantages or shortcomings of earlier methods, while others

are designed to overcome specific problems associated with the growth of a par-

ticular semiconductor. Examples here include the Czochralski pull method which

was developed, among other reasons, to minimize temperature variations in the

melt. The Czochralski method is one of the most common crystal growing techniques

used in silicon technology and single crystals three or four inches in diameter

are common today. Another example involves a modification of the Czochralski

method and incorporates liquid encapsulation. This is finding increased use in

gallium arsenide technology, where it tends to eliminate arsenic in the growth

system. The development and use of these growth systems and others (e.g., Bridgeman,

zone refining, floating zone, vapor, liquid and molecular beam epitaxy, chemical

vapor deposition, etc.), has been largely empirical due in a major part to the

absence of physical theories with predictive capabilities. These difficulties

lie in two groups. The first involves the incomplete picture of growth mechanisms.

The second, while interrelated to the first, recognizes the fact that growth is

fundamentally a three-dimensional phenomena and that one- or two-dimensional

theoretical approximations of this phenomena will not necessarily predict in a

meaningful way such things as the local temperature distribution near the solid-

liquid interface, temperature distributions within the melt due to heating coils,

* Sthe distribution of unwanted impurities arising from contamination by the

crucible, etc.

The question then becomes: How can one successfully undertake a program

that attempts to simulate crystaJigrowth and thereby provide a basic physics

for this growth. An attempt as a partial answer to this question is the

subject of this report which summarizes Scientific Research Associates Phase I DESAT
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study for simulating Gochralski crystal growth. The Phase I study relied strongly

on the attitude that fluid flow in the melt is one of the major influences on the

final properties of the grown crystal [Refs. 1-10]. As a consequence, it dealt solely

with obtaining solution to the relevant hydrodynamic equations for examining flow

patterns in the melt.

II
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2. PHASE I TECHNICAL OBJECTIVES

The primary purpose of the Phase I study was to establish the feasibility

of developing reliable theories with predictive capability in the area of crystal

growth. Within the guidelines of the DESAT program the proposed study was

limited to an area where some computational fluid dynamic studies have already

appeared and where numerous experimental results have been reported; namely,

the area of Czochralski crystal pulling. The intent of the study was to

generalize all previously developed work, and to incorporate three-dimensional

effects, which invariably arise when stirring is included. For Czochralski

growth nonaxisymmetric effects were formulated and numerical simulations were

performed for two cases: (1) a local hot spot on the crucible wall, and

(2) angular misalignment between the crystal and crucible rotational axes.,
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3. NUMERICAL CONSIDERATIONS

In the Czochralski method of crystal growth, the growing crystal is

pulled slowly from the center of a rotating crucible of melt material and the

resultant crystal properties are strongly influenced by details of the melt

thermal and velocity fields. The melt flow represents a relatively complex

fluid mechanics pehnomenon. As shown in the schematic of Fig. 1, the melt is

contained in a nominally axisymmetric crucible of constant temperature which

may be rotating about its axis. The crystal which develops at the melt upper

surface is nominally concentric with the crucible and both axes are nominally

aligned. The crystal rotates about its axis during the growth process. The

upper surface of the melt is a free surface whose shape is determined by the

constant pressure free surface boundary condition and a meniscus of unknown

shape occurs at the melt crystal boundary. Heat transfer at the melt-crystal

boundary is determined by heat conduction away from this boundary within the

crystal and the heat transfer at the melt free surface is determined by

radiative effects to the atmosphere. Finally, the melt motion is driven both

by inertial and viscous forces associated with the crystal and crucible rotation

and by bouyancy forces arising due to temperature differences within the melt.

Obviously, with all these phenomena affecting the flow, a prediction of the

melt velocity and temperature fields is a formidable task.

To date, several investigations have focused upon predictions of the

melt flow field. In a relatively early work Kobyashi and Arizumi (Ref. 2)

considered axisymmetric flow situations and solved the steady-state stream

function-vorticity form of the Navier-Stokes equations in the melt and a

heat conduction equation in the crystal to determine the shape of the

4I crystal-melt interface. The analysis included the effects of bouyancy, but

'1! assumed the melt free surface to be flat. Using a numerical over-relaxation

technique to solve the equations, the authors obtained converged solutions

and examined the effects of fluid motion on the interface shape for viscous

bulk Czochralski flows.

4



In a more recent effort Langlois and Shir (Ref. 6) applied the unsteady

Navier-Stokes equations (again in stream function - vorticity form) to the

melt flow field problem. As in Ref. 2, the melt free surface was assumed to be

flat; however, since the generated flow field was the item of primary interest

in this study, the interface surface was also assumed flat. The equations were

solved by using an explicit time marching procedure for the vorticity equation

and a successive over-relaxation procedure (SOR) for the stream function

equation at each time step. Steady state solutions were obtained to show the

effect of bouyancy on the flow field for several demonstration test cases at

physically unrealistic low Reynolds numbers (high viscosities or small crucibles).

The Langlois-Shir effort of Ref. 6 was extended by Langlois in Ref. 7 to

cases having realistic Reynolds numbers. Several cases were considered, and

the cases run included bouyancy effects, isothermal flows, stationary crucibles,

rotating crucibles and effect of viscosity variation. The calculations were

run using the numerical method described in Ref. 6 and for the cases considered

this method required a very large amount of computer run time. According to

Langlois, each case of Ref. 7 required twenty-five (25) minutes of IBM 360/195

computation time per simulated physical second. Since the isothermal case with

rotating crucible was run for more than thirty-five (35) simulated seconds, this

case required over fourteen (14) hours of run time. For the case of a stationary

crucible, a steady state was reached in an uneventful manner. However, when the

crucible was rotated in addition to the crystal, the secondary flow switched

between two distinct patterns. In general, the results obtained seemed physically

reasonable. More recent studies by Langlois appear in Refs. 8 and 9.

The approaches of Refs. 2, 6-9 demonstrate the ability of computational

methods to impact upon the melt velocity and thermal field predictions.

However, these efforts were confined to axisymmetric flow and, therefore, could

not assess possible three-dimensional effects on the crystal growth process.

Although the physical problem is nominally axisymmetric, possible sources of

three-dimensional effects are temperature hot spots on the crucible wall,

impurities entering the melt from the crucible, non-axisymmetric crucible

or crystal geometries, misalignment of the crystal and crucible axes,

misalignment of the axes from the vertical, etc. Even when no such three-

dimensional "forcing functions" are present, it is possible that three-

dimensional flow patterns may occur due to hydrodynamic instabilities

5



(e.g. see Ref. 11). Hence, the three-dimensional aspects of the problem may have

significant impact on the crystal growth process.

Although the stream function - vorticity formulation of Refs. 2, 6-9

could be extended to three-dimensional flow in principle, in practice the three-

dimensional stream function vorticity approach is difficult, cumbersome and

in general has not been used in solving three-dimensional hydrodynamic

problems. A much more straight-forward and efficient approach would be

based upon a solution of the Navier-Stokes equations with primitive variables,

velocity and pressure (or density), used as dependent variables. Such an

approach is used here to demonstrate a model three-dimensional melt flow field

calcualtion.

In addition to its advantage in a straight-forward application to three-

dimensional melt flow field problems, the velocity-pressure approach also

allows a more direct analysis to the free surface condition. If the free

surface is to be properly modeled, it is necessary to apply a pressure

boundary condition there, and as pointed out by Langlois (Ref. 6), application

of this pressure boundary condition in the stream function-vorticity

framework may be difficult. When primitive variables are used, application

of the free surface boundary condition is expected to be considerably easier.

6



4. ANALYSIS

The crystal growth melt problem focuses upon thermal and velocity

fields of a nearly incompressible fluid driven by inertial, viscous and

bouyancy forces. The bouyancy forces result from fluid temperature variation

causing a slight density variation which leads to a gravitational body force.

The present approach uses the Boussinesq type approximation in which the

buoyancy force is modelled as a body force proportional to the difference

between the local temperature and a reference temperature. This approach

has been used in Refs. 2, 6-9 and its validity requires changes in temperature

to be small compared to the mean temperature. Therefore, the relevant equations

to be solved are the incompressible Navier-Stokes equations with bouyancy

represented by a body force dependent upon the local temperature.

The present effort has several aims including the demonstration of a

three-dimensional calculation capability and development of an efficient

computer ccde. A numerical solution procedure which has proven to be efficient

in a wide range of fluid mechanics problems is the linearized block implicit

(LBI) procedure of Briley and McDonald (Refs. 12 and 13). Since the procedure

has been described in considerable detail elsewhere, it shall only be briefly

outlined here. The reader interested in greater detail should refer to

[12,13].The method can be briefly outlined as follows: the governing equations

are replaced by an implicit time difference approximation, optionally a backward

difference or Crank-Nicolson scheme. Terms involving nonlinearities at the

implicit time level are linearized by Taylor expansion in time about the

solution at the known time level, and spatial difference approximations are

introduced. The result is a system of multidimensional coupled (but linear)

difference equations for the dependent variables at the unknown or implicit

time level. To solve these difference equations, the Douglas-Gunn [14] procedure

for generating alternating-direction implicit (ADI) schemes as perturbations of

fundamental implicit difference schemes is introduced. This technique leads to

systems of coupled linear difference equations having narrow block-banded

matrix structures which can be solved efficiently by standard block-elimination

methods.
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The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The linearization

technique, which requires an implicit solution procedure, permits the solution

of coupled nonlinear equations in one space dimension (to the requisite degree

of accuracy) by a one-step noniterative scheme. Since no iteration is required

to compute the solution for a single time step, and since only moderate effort

is required for solution of the implicit difference equations, the method is

computationally efficient; this efficiency is retained for multidimensional

problems by using ADI techniques. The method is also economical in terms of

computer storage, in its present form requiring only two time-levels of

storage for each dependent variable. Furthermore, the ADI technique reduces

multidimensional problems to sequences of calculations which are one dimensional

in the sense that easily-solved narrow block-banded matrices associated with

one-dimensional rows of grid points are produced.

One immediate problem which arises in the application of the LBI procedure

to incompressible problems is the lack of a time derivative of pressure appearing

in the governing equations. As shown by Briley and McDonald, the LBI approach

requires the appearance of time derivatives of each dependent variable. Therefore,

if this procedure is to be used, a device of some sort must be created to

introduce the missing time derivative into the equations. One method of treating

this problem is the so-called artificial compressibility approach in which a

time-derivative of the required variable (e.g. pressure) is introduced into the

set of equations, and the equations are marched to steady state. When steady

state is reached, the time derivative is zero and the solution satisfies the

required steady state equations. Such an approach has been used by several

investigators e.g. Chorin (Ref. 15).

The present approach utilizes a simila: ,iilosophy in a somewhat

different context and is based upon the analysis of Briley, McDonald and Shamroth

which shows that for constant total temperature flow, the compressible flow

equations reduce to the incompressible equations as the Mach number approaches

zero. This analysis has been derived in an internal SRA report which is

included as an Appendix of the present report. Following this analysis, the

present approach approximates the governing equations by a set of low Mach

number compressible flow equations and a gas law consistent with a constant

total temperature flow. It should be noted that the constant total temperature

8



assumption is only incorporated into the assumed gas law thus making the

equations of continuity and momentum approximate the incompressible flow

equations. The momentum equation contains a body force type term representing

buoyancy which depends upon local physical temperature and the local temperature

is determined from an energy equation.

With this introductory paragraph in mind, the equations used are the

momentum equation,

+ v.)] -= -VP + F- vxl1(vxV)]+ Vl(Fp)V-Vj (1)

the continuity equation,

- + V'(pV) = 0 (2)

and the energy equation

LP + Pf-- -=-N + 4, + .V'T (3)

where t represents time, p represents density, P represents pressure, V

represents velocity, F represents body force, p represents viscosity, e repre-

sents internal energy, Q represents internal heat generation, K represents

thermal conductivity and D is the viscous dissipation function (which is a

function of velocity derivatives). D/Dt represents the material or Stokes

derivative. These equations must be supplemented by an equation of state which

in general relates p, p and T; and expressions which relate viscosity and thermal

conductivity to temperature.

In regard to the equation of state, the analysis (see Appendix) shows

that a constant total temperature fluid approaches an incompressible behavior

as the Mach number approaches zero. Therefore, the equation of state is

taken as

4P =pR T -' (4)

where R is the gas constant and C is specific heat. If T were the local
p

total temperature in the fluid, Eq. (4) would represent the perfect gas law

for an ideal fluid. However, in the present case T is taken as a ficticous

constant temperature of high enough value so that the Mach number, Mr based

9



upon V and T is small; i.e.,

Mr = IVI/ v-V /2Cp) < 1.0

In the present calculations this Mach number was kept below 0.03 and consequently

the equations approach their incompressible form. The final item to be

considered is the bouyancy force. In the present calculations, the bouyancy

force is represented by the Boussinesq relation

'+p g8 (T - Tr) (5)

where a is the volumetric coefficient of expansion, g is the acceleration due

to gravity, T is the local temperature and Tr is a reference temperature.

The boundary conditions used in the present analysis consist of no-slip

and one-sided momentum equations on all solid surfaces. On the free surface,

the velocity normal to the surface is zero, the normal derivatives of the other

velocity components are zero and a one-sided momentum equation is solved. The

temperature is specified on both the crystal and crucible surfaces and a

second normal derivative of temperature is set to zero on the free surface.

The equations are solved as a coupled system with convergence acceleration

techniques of the type described by McDonald and Briley (Ref. 16).

10



5. RESULTS

Several calculations were run under the present effort. These included

a code verification test case, axisymmetric cases with and without bouyancy

effects and a three-dimensional demonstration case. These are now discussed

in detail.

The first case was run to verify the code against a known analytic

solution. The case considered was flow within a rotating crucible with no

crystal in the free surface. For this case the analytic solution for the

azimuthal velocity component is

V (r) = Vwr
w

where V is the velocity at the wall and r is the wall radius. The calculation
w w

was run by assuming an initial flow and marching the equations in time until

convergence was obtained. Convergence was judged by monitoring the maximum

flow field residual as well as the maximum change in dependent variables over

a time step. A comparison between the predicted Ve profile and that obtained

from the analytic solution for an incompressible fluid is given in Table I.

As can be seen, the numerical solution is in excellent agreement with analysis.

The calculation was repeated for flow between co-rotating cylinders and the

comparison between the numerical predictions and the known analytic solution

again was very good. These comparisons serve to verify the code for these

simple test cases.

The second case considered was axisymmetric flow in a stationary

crucible with the crystal rotating. If the crystal radius is denoted by Ri,

the crucible Ve

r Predicted Analytical

1.0 1.000 1.0

.95 .9499 .95

.90 .8999 .90

.85 .8499 .85

.80 .7999 .80

.75 .7499 .75

.70 .6989 .70

.65 .6499 .65

:1 .60 .5988 .60

.55 .5498 .55

.50 .4998 .50

.45 .4498 .45

.40 .3998 .40

.35 .3498 .35

.30 .2998 .30

.25 .2499 .25

.20 .1999 .20

.15 .1499 .15

.10 .0999 .10

.05 .0499 .05
T 0 .0 .0

Table I - Comparison of predicted and analyttcal velocity profiles for rotating crucibles
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radius by R2, the crystal azimuthal velocity at RI by VVl the crucible

azimuthal velocity by V2, the crucible height by h and the viscosity by v, then

the relevant problem parameters were

R2 /R 1 1.5

V2/VI = 0.

Re = V 1 R1  4036

V

h/R 1 = 0.94

The Reynolds number Re represents the ratio of inertial to viscous forces and

this value represents a typical crystal growth process in which R, = 4.2cm,
2

R 2 =f 6.4cm, VI 
= 9.7cm/sec, V2 = 0 -10cm/sec, h = 3.95cm and v = 0.01cm /sec.

Bouyancy effects were set to zero for this case. With these parameters the

case corresponds to the stationary crucible case considered by Langlois in Ref. 6.

The calculation run on a grid containing thirty-one (31) radial points and

twenty-seven (27) axial points converged to a steady solution within eighty (80)

time steps. The present deck is a very general code designed for maximum

flexibility in which equations, dependent variables, grid specification,

boundary conditions, etc. can be easily changed and, therefore, the code

contains a great deal of computer overhead. Even with this large amount of

overhead, the code required less than five (5) seconds of CDC 7600 time per

time step. Recent changes designed to decrease run time (accompanied by a

decrease in code flexibility) have decreased run time by a factor of 2. If

the calculation were repeated with this new code, the total run time would be

approximately 3 minutes. It is anticipated that further streamlining of the

code will reduce run time by an additional factor of 3.

Predictions of the velocity and temperature fields are shown in Figs. 2-4.

Both the Langlois calculation and the present calcualtion reached a steady

state. The azimuthal velocity, Fig. 2, shows good qualitative agreement

with the Langlois solution. Both calculations show the thin boundary layer

on the crystal face as well as the local maximum near the stationary crucible

wall. The predicted secondary flow field (Figure 3) shows the velocity

components V + V and is also in good qualitative agreement with the resultsz r

of Langlois. Both calculations show the secondary flow to consist of a single

12



vortex pattern which is centered in the upper right corner of the flow field.

Finally, temperature contours are shown in Fig. 4 where the ratio of the

crucible wall temperature to the crystal face temperature is 1.052.

The next case considered corresponds to Langlois rotating crucible case

without buoyancy forces. The parameters were now changed so that

V 2/V = -1.02

All other parameters correspond to that of the first case and again bouyancy is

neglected. When bouyancy is neglected the velocity field is unaffected by

the thermal field and hence the resulting velocity field represents

an isothermal calculation. The calculation was again run on a 31 x 27

computational grid, however, in this case complete convergence was not obtained.

The major region of oscillation occurred near the free surface at radii just

beyond the crystal boundary, (RI). The velocity in this region was not well

resolved and it is likely that this lack of resolution may have prevented

convergence. However, the calculation did not show the unsteady flow pattern

observed in Langlois case where the secondary flow shifted between two

distinct patterns.

The azimuthal velocity contours for this case are shown in Fig. 5. The

contours show the Taylor column under the crystal face and are in good

qualitative agreement with the results of Langlois. The four different

regions within the Taylor column discussed by Langlois are clearly evident.

Directly under the crystal fluid turns with the crystals rather than with

the crucible. This is followed by a transition region in which the flow

azimuthal velocity changes from the crystal to the crucible direction. Next

comes a region where the velocity changes little with depth and finally the

boundary region at the crucible bottom.

The secondary flow vector plot in Fig. 6 shows four distinct vortices:

a strong clockwise vortex just under the crystal face, a large but weaker

2 counterclockwise vortex encompassing most of the region between the first

vortex and the crucible bottom and two weak vortices in the outer radial region.

These latter two vortices are very much elongated in the z-direction. Langlois'

solution showed a weak vortex in the outer region which shifted between two patterns.

The maximum values of the predicted-secondary flow velocities are approximately

0.10 V1 within the Taylor column and 0.02 V1 outside of the Taylor column.

13



These values are in good agreement with those given by Langlois. Temperature

profiles are presented in Fig. 7.

The final axisymmetric case considered adds bouyancy effects to the

calculation. The flow parameters used were those of the proceeding case with

the following additions

P r= 0.08

S(Tcrucible.0r crucible crystalr

The results are presented in Figs. 8-10. The azimuthal velocity field shown

in Fig. 8 again is in qualitative agreement with Langlois' calculation. In

particular the change due to bouyancy effects (see Figs. 5 and 8) correspond

to the changes shown by Langlois. The most dramatic change due to bouyancy

occurs in the secondary flow profile where as shown in Fig. 9, the strength

of the secondary flow pattern is increased considerably. The temperature

field in this case shown in Fig. 10. These also show good qualitative a6reement

with Langlois.

14
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6. THREE DIMENSIONAL CALCULATION

The final calculation focused upon three dimensional effects. Before

discussing this calculation several points should be considered. First of all,

three-dimensional calculations make major demands on computer resources and,

therefore, for this demonstration calculation a flow field was chosen to allow

the calculation to be made with a moderate number of grid points (an 11 x 17 x 16

grid was used). This relatively small number of three-dimensional grid points

required the Reynolds number to be smaller than would normally be expected in a

physical problem. Therefore, the case must be viewed as a demonstration case.

The second point concerns the source of the three dimensionality. It

was originally anticipated that the three dimensionality would result from the

angular misalignment of the crystal and crucible. The present effort assumes

a flat free surface and, therefore, the effect 'of angular misalignment would be

confined to changing the region on the upper surface bounded by the crystal

from a circle to an ellipse. For a 5-degree misalignment, the resulting

ellipse would have a ratio of major to minor axis of 1.004. In the absence

of meniscus effects, the three dimensionality arising from misalignment would

be negligible and, therefore, a second three dimensional source arising from a

hot spot on the crucible wall was added to the calculation.

The calculation was run using 16 radial grid points, 11 axial grid points

and 17 azimuthal grid points. The crystal was assumed to be rotating and the

crucible stationary.

The geometrical parameters were taken as

R2/R 1 = 1.5

h/R1 = 0.5

The flow parameters were taken as

Re = VIRI/V = 100

P = .05§ *r

r crystal) .02

where V 1 is the velocity at the crystal radius, Rl, V is viscosity, P r is

Prandtl number, B is the volumetric coefficient of expansion and Fr is the

Froude number. The ratio of the crucible wall temperature to the crystal

15



temperature was taken to be 1.052 and the hot spot temperature ratio was

taken as 1.157. In order to further limit the computational domain two

identical hot spots were assumed present. These were centered at z/h = 0.4,

0 =/2 and z/h = 0.4, =3H/2. This specification allowed the calculation

to be confined to the domain 0 < e < H.

The calculation was first converged as an axisymmetric calculation with

no axis angular misalignment and constant crucible wall temperature. The

azimuthal velocity contours, secondary flow vector plots and temperature contours

are shown in Figs. 11-13. The results are as expected with the low Reynolds number

allowing significant azimuthal velocity to occur through most of the flow field

(compare this to Fig. 2 where Re = 4000). A wall hot spot was then added to

the problem and a three-dimensional calculation initiated from the converged

two-dimensional calculations. Although both the velocity and temperature

fields showed a three-dimensional variation, the velocity field variation in

the azimuthal direction was very small. Both the azimuthal velocity contours

and secondary flow pattern corresponded very closely to the axisymmetric case.

The temperature field showed significant variation and the temperature field

in various azimuthal planes are shown in Figs. 14-16. The calculation then was

continued with a 5-degree angular misalignment between the crystal and crucible

axes; as previously discussed, the addition of this misalignment factor was

not large enough to change the predicted flow field.

1
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7. CONCLUSIONS

The present effort has applied a Navier-Stokes analysis using velocity and

density as dependent variables to the crystal growth melt problem.. The approach

models the equations governing the velocity field as low Mach number compressible

flow equations with a body force proportional to the local temperature and a gas

law which approximates incompressible flow. The analysis has been applied to

flow within a rotating cylinder and flow between two concentric cylinders, and

in both cases the predicted azimuthal velocity field showed excellent agreement

with the analytic solution to the governing equations. Axisymmetric melt

problems which included the effects of bouyancy and crucible rotation were

run and the predicted velocity and thermal fields showed good qualitative

agreement with the vorticity-stream function solutions of Langlois. The

approach was then applied to a model three-dimensional problem in which the

three dimensionality resulted from a hot spot on the crucible wall. Although

the flow parameters (particularly the low Reynolds number) required this to be

viewed as a model calculation, the calculation definitely showed the capability

of the procedure to calculate three-dimensional flows. An assessment of the

effects of three-dimensional sources upon the crystal growth process will

require further code evaluation; code 'speed-up' and extension of the code

to include items such as the free surface boundary.
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A LOW MACH NUMBER FORMULATION OF THE

COMPRESSIBLE EULER EQUATIONS
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SRA Report 82-1

ABSTRACT

It is well known that flow of a perfect gas at low Mach number closely

approximates an incompressible flow, provided'there is no heat addition. The

usual formulation of the compressible Euler equations encounters singular behavior

as the Mach number approaches zero. The Euler equations for a perfect gas are

written here in variables which are well behaved for adiabatic flow at low Mach

number and in a form which reduces to the incompressible (constant density)

Euler equations as the Mach number approaches zero. The present formulation

clarifies how the reduction to incompressible flow occurs and is useful in

constructing numerical algorithms for low Mach number and other flows.
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BACKGROUND

Incompressible Euler Equations

The incompressible Euler Equations can be expressed in nondimensional

vector form as

V.1U=0 (1)

+ (U- V) U + V (2)

where U is the velocity vector, c is a pressure coefficient, and t is time.P

The pressure coefficient is defined by

cp = 2 (p - P (3)

where p is pressure and P1 is an arbitrary (constant) pressure basis. Here

(and subsequently), all variables are nondimensional, having been normalized by

reference quantities denoted by a subscript 'r'. The reference pressure pr has
2

been taken as PrUr 2 , where p denotes density.

The continuity equation (1) and the three components of momentum (2)

comprise four equations governing c (or equivalently p) and the threeP
components of U. For incompressible flow, c and U are independent of thep
temperature T, which in turn is governed by an energy equation that does depend

on U.

Compressible Euler Equations

The compressible continuity and momentum equations can be written in

the following form:

3(£n P)at + V • U + U V (Zn P) = 0 (4)
at

-U+ U- V)U + V(R)+R V (tn p) = 0 (5)
at at P

The equation of state for a perfect gas can be expressed as

P = PT/YM2  (6)

where y is the specific heat ratio, and the reference Mach number M is given by
2M = U r/c. Here, c is the reference speed of sound defined by c yRT r, and R

is the gas constant. The 'r' subscript on M is omitted for convenience, but no

confusion should arise since only the reference Mach number will be referred to

subsequently. The system is closed by the energy equation, which may be
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written as

_T + VT = (y-I)T V • U (7)
3t

The usual method of reducing the compressible equations to the incompres-

sible equations is to assume a constant density and note that an equation of

state is no longer needed. As a limiting process, however, the equation of

state (6) indicates that p becomes infinite as M - 0 (unless T - 0). Equations

(4 - 7) are reformulated here as a system of equations which remains well

behaved as M - 0.

LOW MACH NUMBER FORMULATION

To relate the compressible and incompressible equations, a new

dependent variable c relating p and p is introduced and defined byP

p = _Z_ .1 (yM2p _ p2 ) (8)

where P2 is an arbitrary (constant) pressure basis. Using Eq. (8) to eliminate

p in the momentum equation (5) leads to

+U(n p) + ( V) +V-# +-2 V(in P) = 0 (9)at at 2 2

The definition of (nondimensional) stagnation enthalpy E is

E = T + (y-l) M2 q 2/2 (10)

where q 2  U, and Er has been taken as C T where C is the specific

heat at constant pressure. Combining the equation of state (6) and the defini-

tion of stagnation enthalpy (10) gives

p = p [E/yM 2 
- (y-l) q 2/2y] (11)

Combining Eqs. (8) and (11) to eliminate p leads to

2 (y-1)M2  2 -(
, . =  P 2 [E - 2 CpM c2 (12)

p=2 [ 2 c 2 q

For a wide range of flow conditions, including adiabatic flow at low Mach

number, the stagnation enthalpy E may be assumed to be a known constant. In this

instance, Eq. (12) relates p, cp, and U and serves to decouple the continuity

and momentum equations (4) and (9) from the energy equation (7), which can be

omitted from consideration. The system of governing equations then consists of

Eqs. (4), (9), and (12), with dependent variables p, cp, and U.
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Note from Eq. (12) that p - P2 /E (a constant) as M -* 0. As a consequence,

the terms containing V(1n p) in Eqs. (4) and (9) vanish as M - 0, and these

equations thus reduce to the incompressible form of Eqs. (1) and (2). The limit

M -+ 0 is taken by letting R - m, which allows Ur , Pr' Tr' y = 0(1).

In this formulation,

c c, p - 1 as M - 0 (13)
p p

assuming appropriate choices are made for P1, P2 2 and E. To guide these choices,2

it is noted that selecting P2 = 1, E = 1 + (y-l)M /2 implies that c = 0 andP

p = T = 1 where q = 1 (freestream basis condition for P1). The choice P = E = I

implies that c 0 and p = T = 1 where q 0 (stagnation-point basis for P.
p

With either choice for P and E, c - c follows as M - 0 because c and c satisfy
2 p P p p

the same governing equations and boundary conditions and are equal at the basis

point. Also, since p - 1 as M - 0, in p itself approaches zero as M - 0.

It is important to distinguish the roles played by c and by the assumptionp
of constant E. The change of variables from p to c is responsible for eliminat-

ing the singular behavior which would otherwise occur in Eq. (11) whether or not

E is constant. The assumption of constant stagnation enthalpy is not a requirement

for use of the low Mach number formulation of the equations, and is necessary only

if the compressible equations are to imply constant density as M - 0 (cf. Eq. 12).

It is thus clear that the physical motivation for requiring constant stagnation

enthalpy at low Mach number is to produce a flow field with nearly constant

density.

It is also worth noting that since V • U -* 0 as M - 0, the last term in

the energy equation (7) vanishes, and this equation thus reduces to its incompres-

sible form

aT + U - VT =0 (14)
at+

Since Eqs. (10) and (12) imply that T - E and p - P2 /E as M - 0, it is evident

that taking E as constant as M - 0 does not permit a variable T, and if E varies,

then p varies as T- 1. Nevertheless, the present formulation can be used to treat

incompressible (constant density) flows with nonconstant temperature by taking E

as constant and omitting Eq. (10). This can be justified by noting that for small

Mach number (say M < 0.1) and constant E, the present system for a perfect gas

closely approximates a constant density incompressible flow and is thus a good

model (for example) for flow of a liquid whose (constant) density is assumed to be
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independent of temperature. In this instance, the quantity E in Eq. (12) is

reinterpreted as a nonphysical modeling parameter which serves to decouple the

continuity and momentum equations from the energy equation, as required for

the liquid. The incompressible energy equation (14) can then be solved separately

for the physical temperature variation, and the incompressible constant-density

liquid is thus modeled as a very slightly compressible fluid with constant

'stagnation enthalpy'. The Boussinesq assumption for natural convection can be

introduced within this same context by adding a body force term (which depends

only on temperature) to the momentum equation.

As a separate issue, it is worth noting that the assumption of constant

stagnation enthalpy is useful over a wide range of flow conditions and is much

more general than is an assumption of isentropic flow. The constant stagnation

enthalpy assumption is reasonable for transonic and supersonic flow with shocks

and also for adiabatic viscous flow with unit Prandtl number and no viscous

heating. The authors have made extensive use of this assumption in treating

viscous flow at supersonic, low subsonic, and transonic Mach numbers (eg. Refs. 1-3).
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